

GCSE REVISION 9

Calculations 2

1 Give the formula of the following ionic substances.

a) aluminium chloride AlCl₃

d) calcium nitrate

Ca(NO₃)₂

b) potassium sulfide K₂S

e) magnesium hydroxide Mg(OH)₂

c) sodium sulfate

Na₂SO₄

f) iron(II) oxide

FeO

2 Calculate the relative formula mass of the following substances.

a) fluorine, F_2 2(19) = 38

b) iron(III) nitrate, Fe(NO₃)₃ 56 + 3(14) + 9(16) = 242

- 3 Calcium oxide is made from the thermal decomposition of calcium carbonate: $CaCO_3 \rightarrow CaO + CO_2$
 - a) Calculate the maximum mass of calcium oxide that could be formed from heating 500 g of calcium carbonate.

moles
$$CaCO_3 = \frac{500}{100} = 5$$

moles $CaO = 5$
mass $CaO = 56 \times 5 = 280 \text{ g}$

b) In a reaction, 250 g of calcium oxide was formed from heating 500 g of calcium carbonate. Calculate the percentage yield for this reaction.

% yield = 100 x
$$\frac{250}{280}$$
 = 89.3%

- c) Suggest two reasons why the yield was less than 100%.
 - reaction is reversible / incomplete
 - some products lost
 - · other reactions may take place
- d) Calculate the atom economy to make calcium oxide from calcium carbonate by this reaction.

% atom economy = 100 x
$$\frac{56}{100}$$
 = 56.0%

4 What mass of oxygen reacts with 270 g of aluminium? 4Al + $3O_2 \rightarrow 2Al_2O_3$

moles AI =
$$\frac{270}{27}$$
 = 10
moles O₂ = $\frac{3}{4}$ x 10 = 7.5
mass O₂ = 32 x 7.5 = 240 g

- **5** Calculate the volume of the following gases at room temperature and pressure.
 - a) 3 moles of oxygen, O2

volume
$$O_2 = 24 \times 3 = 72 \text{ dm}^3$$

b) 22 g of carbon dioxide, CO₂

moles
$$CO_2 = \frac{22}{44} = 0.5$$

volume $CO_2 = 24 \times 0.5 = 12 \text{ dm}^3$

What volume of hydrogen gas is needed to react with 10 dm³ of nitrogen to make ammonia, with the volume of all gases measured at the same temperature and pressure?

$$\mbox{N}_2 \ + \ 3\mbox{H}_2 \ \rightarrow \ 2\mbox{NH}_3 \label{eq:N2}$$
 volume \mbox{H}_2 = 10 x 3 = 30 \mbox{dm}^3

5.6 g of iron (Fe) reacts with 24 g of bromine (Br₂) to make a compound containing iron and bromine only. Calculate the moles of iron and bromine and use this to determine the balanced equation for the reaction.

moles Fe =
$$\frac{5.6}{56}$$
 = 0.1
moles Br₂ = $\frac{24}{160}$ = 0.15
ratio moles Fe : moles Br₂ = 0.1 : 0.15 = 2 : 3
2Fe + 3Br₂ \rightarrow 2FeBr₃

8 25.0 cm³ of a solution of citric acid, which is represented by H₃T in the equation, reacted with 26.4 cm³ of 0.100 mol dm⁻³ sodium hydroxide solution in a titration.

$$H_3T + 3NaOH \rightarrow Na_3T + 3H_2O$$

a) Calculate the concentration of the citric acid in mol/dm³. Give your answer to 3 significant figures.

mol NaOH =
$$0.100 \times \frac{26.4}{1000} = 0.00264$$
 mol mol H₃T = $\frac{1}{3} \times 0.00264 = 0.00088$ mol conc H₃T = $\frac{0.00088}{\frac{25.0}{1000}} = 0.0352$ mol/dm³

c) Calculate the concentration of the citric acid in g/dm³. The relative formula mass of citric acid is 226. Give your answer to 3 significant figures.

conc
$$H_3T = 0.0352 \times 226 = 7.96 \text{ g/dm}^3$$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out mass from moles			Deduce molar reacting ratio from mass		
Shows suitable working			Can work out % atom economy			Work out moles for solutions		
Can write ionic formulae			Can work out % yield			Convert mol/dm³ to g/dm³		
Can work out M _r			Understands why yield < 100%			Does not round too much		
Work out moles from mass			Work out gas volume from mass or mol			Can use sig figs		
Use equation to find reacting moles			Understands reacting gas volumes			Gives units		